Light scattering and wavefront aberrations in in vivo imaging of the rat eye: a comparison study.

نویسندگان

  • Christian van Oterendorp
  • Luis Diaz-Santana
  • Natalie Bull
  • Julia Biermann
  • Jens F Jordan
  • Wolf A Lagrèze
  • Keith R Martin
چکیده

PURPOSE In vivo imaging of the retina is becoming an increasingly important research method. General anesthesia rapidly compromises the corneal surface, which increases scattering. In addition, wavefront aberrations limit the maximum imaging resolution. Three common methods of stabilizing the air-cornea interface and reducing scattering are the use of a contact lens, a microscopy slide coverslip, or mineral oil. These methods have not yet been analyzed regarding their impact on scattering and wavefront aberrations. METHODS Nineteen eyes of 19 rats were analyzed with a custom-made Hartmann-Shack (HS) wavefront sensor. The amount of scattering was determined by analysis of the HS spot width, and the wavefront was reconstructed for the naked eye and each scattering-reducing method. Their effect on optical quality was determined by calculating the modulation transfer function (MTF). RESULTS The three methods applied significantly reduced scattering but were differentially effective, with the coverslip performing the best and the mineral oil the worst. The root mean square (RMS) of the wavefront aberration, as well as the intereye variability of the RMS, was significantly smaller with the contact lens than with the coverslip. The MTF was best for the contact lens and worst for the coverslip, which was also illustrated by image simulations. CONCLUSIONS The coverslip, contact lens, and mineral oil, when applied to the cornea, all reduced scattering. The best-performing method, the coverslip, increased wavefront aberrations. Overall, the contact lens had the best influence on image quality, and it appears to be the method of choice for high-resolution retinal imaging in rats.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue

Adaptive optics by direct imaging of the wavefront distortions of a laser-induced guide star has long been used in astronomy, and more recently in microscopy to compensate for aberrations in transparent specimens. Here we extend this approach to tissues that strongly scatter visible light by exploiting the reduced scattering of near-infrared guide stars. The method enables in vivo two-photon mo...

متن کامل

Snapshot coherence-gated direct wavefront sensing for multi-photon microscopy.

Deep imaging in turbid media such as biological tissue is challenging due to scattering and optical aberrations. Adaptive optics has the potential to compensate the tissue aberrations. We present a wavefront sensing scheme for multi-photon scanning microscopes using the pulsed, near-infrared light reflected back from the sample utilising coherence gating and a confocal pinhole to isolate the li...

متن کامل

In vivo fluorescent imaging of the mouse retina using adaptive optics.

In vivo imaging of the mouse retina using visible and near infrared wavelengths does not achieve diffraction-limited resolution due to wavefront aberrations induced by the eye. Considering the pupil size and axial dimension of the eye, it is expected that unaberrated imaging of the retina would have a transverse resolution of 2 microm. Higher-order aberrations in retinal imaging of human can be...

متن کامل

Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer

Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferomet...

متن کامل

Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model

Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 52 7  شماره 

صفحات  -

تاریخ انتشار 2011